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Sex differences in oncogenic mutational processes
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Sex differences have been observed in multiple facets of cancer epidemiology, treatment and

biology, and in most cancers outside the sex organs. Efforts to link these clinical differences

to specific molecular features have focused on somatic mutations within the coding regions

of the genome. Here we report a pan-cancer analysis of sex differences in whole genomes of

1983 tumours of 28 subtypes as part of the ICGC/TCGA Pan-Cancer Analysis of Whole

Genomes (PCAWG) Consortium. We both confirm the results of exome studies, and also

uncover previously undescribed sex differences. These include sex-biases in coding and non-

coding cancer drivers, mutation prevalence and strikingly, in mutational signatures related to

underlying mutational processes. These results underline the pervasiveness of molecular sex

differences and strengthen the call for increased consideration of sex in molecular cancer

research.
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Sex disparities in cancer epidemiology include an increased
overall cancer risk in males corresponding with higher
incidence in most tumour types, even after adjusting for

known risk factors1,2. Cancer mortality is also higher in males,
due in part to better survival for female patients in many cancer
types, including those of the colon and head and neck3. Inter-
estingly, female colorectal cancer patients respond better to sur-
gery4 and adjuvant chemotherapy, though this is partially due to
biases in tumour location and microsatellite instability5. Similarly,
premenopausal female nasopharyngeal cancer patients have
improved survival regardless of tumour stage, radiation or che-
motherapy regimen6. There is a growing body of evidence for sex
differences in cancer genomics7–12, but their molecular origins
and clinical implications remain largely elusive.

Previous studies have mostly focused on protein coding
regions, leaving the vast majority of the genome unexplored. We
hypothesise that there are uncharacterised sex differences in the
non-coding regions of the genome. Using data from the Pan-
cancer Analysis of Whole Genomes (PCAWG) project13, we
perform a survey of sex-biased mutations in 1983 samples (1213
male, 770 female) from 28 tumour subtypes, excluding those of
the sex organs (Supplementary Data 1). The PCAWG Con-
sortium aggregated whole-genome sequencing data generated by
the ICGC and TCGA projects. These data were re-analysed with
standardised, high-accuracy pipelines to align to the human
genome (reference build hs37d5). Our study leverages mutation
calls generated by PCAWG working groups13–16 to identify
molecular associations with sex. We exclude the X and Y chro-
mosomes to focus on autosomal sex differences in cancers
affecting both men and women, but there are known to be sig-
nificant X-chromosome mutational differences between tumours
arising in men and women8. Our analysis reveals sex differences
in specific genes and in genome-wide phenomena including
mutation signature activity. These sex-biases occur not only at the
pan-cancer level across all 1983 tumours, but also in individual
tumour subtypes.

Results
Sex-biases in driver genes, mutation load and tumour evolu-
tion. We began by investigating sex differences in driver gene
mutation frequencies, focusing on 165 coding and nine non-
coding mutation events14 (Supplementary Data 2). We used
proportion tests to identify candidate sex-biased events with a
false discovery rate (FDR) threshold of 10%. These putative sex-
biased events were modelled using logistic regression (LGR) to
adjust for tumour subtype-specific variables (model descrip-
tions and variable breakdown in Supplementary Data 1).
Finally, we vetted these sex-biased events in two ways: we
assessed the impact of covariate imbalances in the data using
repeated down-sampling analysis; we also implemented exten-
ded regression models to adjust for additional variables like
stage or grade, which were only available for a greatly reduced
subset of the data (see “Methods” section). We confirmed that
all sex-biases remained significant under this additional scru-
tiny. This statistical framework formed the basis for our ana-
lysis of all genomic features.

Tumour subtype-specific sex-biased driver mutations included
CTNNB1mutation frequency in liver hepatocellular cancer (Liver-
HCC), with more male-derived samples harbouring CTNNB1
mutations: (male: 31%, female: 13%, 95% CI: 8.1–28%, prop-test q
= 0.048, LGR q= 1.4 × 10−3, Fig. 1a, Supplementary Fig. 1). This
mirrors our previous finding of sex-biased CTNNB1 mutation
frequency in liver cancer from TCGA exome sequencing data,
with similar effect sizes (male: 33% vs. female: 12%11). We also
identified a large sex-disparity in a non-coding driver event in

thyroid cancer (Thy-AdenoCA): TERT promoter mutations were
observed in 64% of male-derived samples compared with only
11% of female-derived samples (95% CI: 17–89%, prop-test q=
6.9 × 10−3, LGR q= 0.074, Fig. 1a, Supplementary Fig. 1), again
supporting a previous finding17. We did not find pathogenic
germline variants in TERT or CTNNB1 that might bias the
detection of sex-associated somatic mutations in these genes.
Other putative sex-biased events were detected, but were either
not statistically significant after multivariate adjustment at present
sample sizes (Supplementary Data 2), or were attributed to over-
represented tumour subtypes (Supplementary Fig. 2).

Our previous work11 found sex-biased mutation density across
a number of tumour subtypes, including cancers of the liver,
kidney and skin. We therefore investigated mutation density here
to identify tumour subtypes where the cancer genomes of one sex
accumulate more somatic single nucleotide variants (SNVs) than
those of the other sex. Returning to our statistical framework, we
first used Mann–Whitney U-tests to identify putative sex-biases,
and then applied multivariate linear regression (LNR) on
Box–Cox transformed mutation load to adjust for possible
confounders. The Box–Cox transformation applies a power
function to modify the shape of a variable’s distribution to better
approximate a normal distribution. It preserves monotonicity and
is often applied to make data more suitable for regression analysis
(see “Methods” section). We also compared the total number
of somatic SNVs and further divided mutations by coding and
non-coding SNVs to determine whether sex-biases may be
influenced by specific genomic contexts. Across all pan-cancer
samples, we identified higher mutation prevalence in male-
derived samples in all three contexts (coding LNR q= 7.3 × 10−4,
non-coding LNR q= 6.4 × 10−4, overall LNR q= 1.9 × 10−6;
Supplementary Data 3). These sex-biases remained significant
even after adjusting for tumour subtype, ancestry and age in
multivariate analysis, and after evaluating the effects of
imbalanced tumour subtype and sex sample sizes (Fig. 1b, left;
Supplementary Figs. 2, 3).

We investigated somatic SNV burden in each of the 23
individual tumour subtypes with at least 15 samples (nmale+
nfemale ≥ 15), applying the same statistical approach using tumour
subtype-specific models (Supplementary Data 1). We found sex-
biased mutation load in three tumour subtypes (Fig. 1b, right),
with trending higher male coding mutation load in thyroid cancer
(difference in location = 0.26 mut/Mbp, 95% CI= 0.12–0.43
mut/Mbp, U-test q= 0.028, LNR q= 0.10), and higher male SNV
load in hepatocellular cancer and kidney renal cell cancer
(Kidney-RCC) for all three genomic contexts (Supplementary
Data 3). We compared the group rank differences of coding and
non-coding mutation load between the sexes and found that in
renal cell cancer, the differences were similar at 0.40 mut/Mbp for
non-coding mutations and 0.37 mut/Mbp for coding mutations.
In hepatocellular cancer however, the median sex-difference in
non-coding mutation load was higher than the difference in
coding mutation load (non-coding difference = 0.84 mut/Mbp vs.
coding difference = 0.53 mut/Mbp). There was a similar effect for
pan-cancer mutations (non-coding difference = 0.60 mut/Mbp
vs. coding difference = 0.41 mut/Mbp) suggesting mutation
context may have a role in sex-biased SNVs in some tumour
subtypes.

On detecting sex differences in both the mutation frequency
of specific drivers as well as SNV density in the same tumour
subtypes, we asked whether one may bias the other. For
instance, higher CTNNB1 mutation frequency in male-derived
tumours may simply be due to more mutations occurring in
those same samples. We therefore looked for associations
between SNV burden with CTNNB1 mutation in hepatocellular
cancer, and with TERT promoter mutation in thyroid cancer.
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We did not find a significant association between SNV burden and
CTNNB1 mutation in hepatocellular cancer. In thyroid cancer
however, TERT promoter mutation was associated with increased
overall mutation burden (medianTERT-wt= 0.32 mut/Mbp vs.
medianTERT-mut= 0.82 mut/Mbp, U-test p= 7.9 × 10−8). We
further confirmed the association using a linear regression model
(linear regression pTERT= 2.4 × 10−5, psex= 0.37, Fig. 1c). To
assess whether the sex-bias in TERT promoter mutation
frequency might be due to sex-biased accumulation of SNVs,
we examined tumour-matched mutation timing data generated
by the PCAWG consortium15. We found that of eleven polyclonal
samples with TERT promoter mutations, nine of these were
earlier occurring truncal events.

We continued investigating whether sex-biased driver muta-
tions might occur at different stages of tumour evolution between
men and women and examined tumour subclonal architecture.
Focusing only on thyroid tumours with TERT promoter
mutations and liver tumours with CTNNB1 mutations, we
compared the proportions of polyclonal vs. monoclonal tumours
between the sexes (Supplementary Fig. 4). We did not find sex-
biased polyclonality in TERT promoter-mutated tumours, but did
detect a putative bias in the proportion of polyclonal CTNNB1-
mutated tumours (80% of male-derived tumours are polyclonal
vs. 46% of female-derived tumours, 95% CI=−0.019–0.70, prop-
test p= 0.039). We therefore accounted for polyclonality when
comparing the timings of the mutations in these driver events. On
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Fig. 1 Sex-biases in mutation frequency of driver genes, SNV density and tumour evolution. a From top to bottom, each plot shows the logistic
regression q-value for the sex effect; difference in proportion of mutated samples between the sexes with blue denoting male-dominated bias; and mutation
proportion for each gene. Covariate bars indicate mutation context and tumour subtype of interest. b The burden of somatic SNVs for coding, non-coding
and overall mutation load. Linear regression q-values are shown. c Coding mutation load for thyroid adenocarcinoma samples compared by sex and
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subsequently examining the frequency of clonal vs. subclonal
driver mutation events between the sexes, we found that while
there were differences in the proportions of truncal mutations
(e.g. 100% of TERT promoter mutations were truncal events in
male-derived vs. 50% truncal events in female-derived thyroid
cancer patients), no comparisons were statistically significant.

We expanded our clonality analysis to perform a general
survey of clonal structure and mutation timing across all tumour
subtypes and mutations (Supplementary Data 4). We found that
female-derived biliary adenocarcinoma (Biliary-AdenoCA)
tumours were frequently polyclonal, whereas most male-derived
tumours were monoclonal (26% male-derived samples are
polyclonal vs. 80% female-derived, 95% CI= 19–88%, prop-test
q= 0.063, LGR q= 0.026; Fig. 1d). In addition, we found
intriguing evidence suggesting there may be sex differences in
the mutation timing of structural variants (SVs) in this tumour
subtype. Structural variants in male-derived samples were more
frequently truncal events than in female-derived samples (median
male percent truncal SVs = 100% vs. median female = 82%, 95%
CI= 0.9–32%, U-test q= 0.081, LNR q= 8.6 × 10−3; Fig. 1e).
Though other comparisons did not reach our statistical
significance threshold, we found some interesting trends that
may merit future study, including in oesophageal cancer (Eso-
AdenoCA) where SVs in female-derived samples were more
frequently truncal events while SVs in male-derived samples
occurred more frequently in subclones (median male percent
truncal SVs = 55%, median female = 100%; Supplementary
Fig. 5), and in medulloblastoma, where insertion-deletions
(indels) were more frequently truncal events in female-derived
samples than male (median male percent of truncal indels = 65%,
median female proportion of truncal indels = 70%; Supplemen-
tary Fig. 6). Our analysis of sex differences in tumour evolution
identified some sex-biased events and hint at putative sex-biases
that should be further explored in future analyses.

Sex-biases in genome instability and CNAs. Next, we examined
percent genome altered (PGA), which provides a summary of
copy number aberration (CNA) load. A proxy for genome
instability, PGA is a complementary measure of mutation density
to somatic SNV burden. Although we did not find associations
between sex and autosome-wide PGA, we observed sex-biases in
the copy number burden for specific chromosomes (Fig. 2a). In
pan-cancer analysis, male-derived samples exhibited a slight but
significant higher percent chromosome altered for chromosome
7 even after accounting for tumour subtype, ancestry and age
(median male PGA-7= 5.4%, median female PGA-7= 0.37%,
95% CI= 9.4 × 10−4–2.4 × 10−3%, U-test q= 5.0 × 10−3, LNR
q= 0.024; Supplementary Data 5). In individual tumour subtypes,
we found sex-biased PGA in renal cell cancer (chromosomes 7 &
12) and hepatocellular cancer (chromosomes 1 & 16). On further
scrutinising these sex-PGA associations using extended models,
we found that grade was a likely confounder in renal cell cancer,
though the sex effect after correcting for this variable was still
trending (extended LNR q= 0.17). By looking at copy number
gains and losses separately, we additionally identified chromo-
somes with sex-biases in the burden of copy number gains and
losses (Supplementary Fig. 7 and Supplementary Data 5),
including sex-biased percent copy gained on chromosomes 5, 8
and 17 in pan-cancer tumours. These biases in chromosome
instability were robust to imbalanced sex sample sizes (Supple-
mentary Fig. 8).

We next compared CNA frequency on the gene level to
identify specific genes lost or gained at sex-biased rates.
Across all pan-cancer samples, we found 2,502 genes with sex-
biased gains across 13 chromosomes (LGR q-value < 10%, Fig. 2b,

Supplementary Data 6, 7, Supplementary Figs. 2, 9), These genes
were all more frequently gained in male-derived samples than
female, with differences in copy number gain frequency up to
10% on chromosomes 7 and 8. Genes with male-dominated copy
number gains include the oncogene MYC (male gain frequency =
37% vs. female gain frequency = 28%, 95% CI= 5.2–14%, prop-
test q= 2.5 × 10−3, LGR q= 0.068). The driver CTNNB1 was also
more frequently gained in male samples (male gain frequency =
8.9% vs. female gain frequency = 5.2%, 95% CI= 1.4–6.1%, prop-
test q= 0.016, LGR q= 0.053). We did not find pan-cancer sex-
biased copy number losses.

We repeated this analysis for every tumour subtype indepen-
dently and found sex-biased CNAs in renal cell and hepatocel-
lular cancer (Supplementary Data 6 and 7). In renal cell cancer
(Kidney-RCC), 1,986 sex-biased gains all occurred more
frequently in male-derived samples, with differences in frequency
up to 35% (Fig. 2c). They spanned across chromosomes 7 and 12,
agreeing with our finding of male-dominated genome instability
in these chromosomes (Fig. 2a; Supplementary Fig. 7). Using an
extended renal cell cancer model accounting for grade, we
obtained a high confidence set of 969 genes altered by sex-biased
gains (extended model q < 0.1), with the remaining 1017 genes
having a trending sex effect (extended model q < 0.17). In contrast
to the male-dominated gains in pan-cancer and renal cell
findings, we found higher female frequency of copy number
losses in hepatocellular cancer (Fig. 2d). We identified 2226 genes
with higher copy number loss rates in female-derived samples. As
observed in renal cell cancer some of these losses span whole
chromosomes, in this case chromosomes 3 and 16. Extended
modelling in Liver-HCC incorporating stage and grade resulted
in a list of 1797 high confidence sex-biased genes (extended
model q < 0.1).

The concurrence between sex-biased PGA and gene-specific
events in renal cell and hepatocellular cancer suggested that
PGA could be used to guide identification of additional sex-
biased CNAs on the gene level. We more closely examined
regions of interest in tumour subtypes of that did not have sex-
biased CNAs in our general CNA analysis, but did have
putatively sex-biased genome instability (U-test q < 0.2): biliary
cancer, B-cell non-Hodgkin lymphoma (Lymph-BNHL), and
chronic lymphocytic leukaemia (Lymph-CLL). We identified an
additional 203 genes on the p-arm of chromosome 8 that were
more frequently lost in female-derived biliary tumours
(Supplementary Fig. 10). These copy number losses were 50%
more common in female-derived tumours and affect genes such
as DLC1, a known tumour suppressor gene in hepatocellular
cancer that is thought to have a similar role in gallbladder
cancer18. Although we did not identify additional sex-biased
CNAs in non-Hodgkin lymphoma, chronic lymphocytic
leukaemia or melanoma, our sex-biased PGA results suggest
these as regions of interest for future work.

Sex-biases in mutational signatures. We hypothesised that sex
differences in mutation density and tumour evolution char-
acteristics might be driven by sex differences in mutational pro-
cesses. In addition to single base substitution (SBS) signatures,
which have been well annotated and linked to tumour
aetiology19,20, we also examined doublet base substitution (DBS)
and small insertion-deletion (ID) signatures. Sex differences in a
mutational signature could shine insight on molecular differences
between the sexes. For each of 47 validated PCAWG SBS, 11 DBS
and 17 ID signatures16, we performed a two-stage analysis. We
first compared the proportions of signature-positive samples
between the sexes; that is, we looked at the proportions of samples
with any mutations attributed to the signature to determine
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whether there was a relationship between each signature and sex.
Then, we focused on signature-positive samples and compared
the percentage of mutations attributed to each signature between
the sexes to assess relative signature activity. For both analyses
we used univariate techniques to identify putative events, adjusted
for additional variables using linear models with SNV density as
a variable, and compared the distributions of attributed mutations
with Kolmogorov–Smirnov tests. We also evaluated hits using
the added scrutiny of down-sampling and extended regression
models (see “Methods” section; Supplementary Figs. 11, 12).

At the pan-cancer level, we identified three signatures that
occurred more frequently in one sex over the other (Fig. 3a;
Supplementary Data 8). SBS1 was more commonly detected in
female-derived samples (88% of male-derived vs. 97% of female-
derived, χ2-test q= 9.2 × 10−10, LGR q= 3.0 × 10−6) and was also
associated with higher signature activity in these samples (male
median percent mutations attributed to SBS1= 8.6%, female
median = 10%, U-test q= 5.5 × 10−3, LNR q= 0.059). Con-
versely, signatures SBS17a and SBS17b were detected in a larger
proportion of male-derived samples (16% of male-derived vs.
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7.2% of female-derived). SBS1 is thought to be caused by
deamination of 5-methylcytosine to thymine, resulting in base
substitutions. Signatures SBS17a and SBS17b are of unknown
aetiology. We also identified a sex-bias in indel signature ID5,
which had higher activity in female-derived tumours (male
median percent attributed mutations = 35%, female median =
38%, U-test q= 1.1 × 10−3, LNR q= 0.053). ID5 mutations are

clock-like and may accumulate in normal cells. Both SBS1 and
ID5 are correlated with age, but our multivariate model accounts
for this variable and sex-bias remains significant.

Since mutational processes are disease-specific, we repeated the
mutational signatures analysis in each tumour subtype.
We identified six sex-biased signatures in hepatocellular
cancer (Fig. 3b; Supplementary Data 8). We again detected a
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female-dominated bias in the proportion of SBS1-positive
samples (58% of male-derived vs. 88% of female-derived, χ2-test
q= 3.5 × 10−5, LGR q= 6.3 × 10−5). We also detected a male-
dominated bias in SBS16 (16% of male-derived vs. 2.2% of
female-derived, χ2-test q= 9.8 × 10−3, LGR q= 0.011). A pre-
vious study21 described this sex-biased signature and an
association between more CTNNB1 mutations and higher activity
of SBS16 in an independent dataset; these findings agree with
what we report here for PCAWG data. There were also four sex-
biased ID signatures in hepatocellular cancer: ID3 (94% of male-
derived vs. 81% of female-derived, χ2-test q= 5.0 × 10−3, LGR q=
0.011), ID8 (93% of male-derived vs. 78% of female-derived, χ2-test
q= 3.5 × 10−3, LGR q= 4.6 × 10−3) and ID11 (17% of male-
derived vs. 1.1% of female-derived, χ2-test q= 3.5 × 10−3, LGR
q= 0.011) occurred more frequently in male-derived samples. ID3
is associated with tobacco smoke, and ID8 with double-stranded
break repair. ID11 has unknown aetiology. Although ID1 was
detected at similar rates between the sexes, a greater proportion of
ID1-attributed mutations were found in female-derived than male-
derived samples (male median percent mutations attributed to ID1
= 21%, female median = 27%, U-test q= 2.4 × 10−6, LR q= 1.0 ×
10−5). Using our extended hepatocellular model to further
scrutinise these signatures, we found that all remained sex-biased
after accounting for these variables except in ID3, where the effect
was trending (extended model q-value = 0.12). Mutations
associated with ID1 are thought to result from slippage during
DNA replication and are associated with defective DNA mismatch
repair, suggesting that while male- and female-derived tumours
harbour defective DNA repair at similar rates, it is responsible for a
larger proportion of mutations in female-derived tumours.
Taken together, sex-biases in the aetiology underlying the
molecular landscape of hepatocellular cancer begin to emerge. In
this tumour subtype, spontaneous or enzymatic deamination of
5-methylcytosine to thymine and defective mismatch repair occur
more frequently in female patients and are also responsible for
more mutations. Conversely, tobacco smoking is more common in
male patients though the number of mutations attributed to
tobacco smoke is not different between the sexes; this leads to more
tobacco-associated male hepatocellular tumours.

In B-cell non-Hodgkin lymphoma, we identified significant
differences in the proportions of SBS17a- and SBS17b-positive
tumours (Fig. 3c; Supplementary Data 8). More male-derived
samples had mutations associated with these signatures. There
were also several intriguing sex differences in mutational
signatures that did not meet our significance threshold. For
instance in thyroid cancer, DBS2 accounts for a higher percentage
of mutations in male-derived samples (male median percent
mutations attributed to DBS2= 50%, female median = 33%,
Supplementary Data 8). The association of DBS2 with tobacco
smoking suggests that future insight in this signature may provide
molecular explanations for the sex-specific associations between
smoking and thyroid cancer risk22. As the aetiologies of these
mutational signatures become better known, we can better
understand how underlying mutational processes lead to
molecular sex-biases. We may also be able to discern environ-
mental and lifestyle factors even in the absence of reported data,
allowing us to better account for confounding factors.

Finally, to ensure that our findings were not skewed by
differences in sequencing quality, we checked for sex-biases in
quality control (QC) metrics. These included comparing the
coverage, read length, and overall quality summaries of both
tumour and normal genomes. We mirrored our main analyses
and used Mann–Whitney U-tests or χ2 tests and linear modelling
to check each QC metric. We did not find sex-biases in any QC
metric in pan-cancer or tumour subtype analysis after multiple
adjustment except in raw somatic mutation calling (SMC)

coverage. SMC coverage was higher in male-derived samples in
six tumour subtypes including thyroid cancer and oesophageal
cancer, and was higher in female-derived samples in lung
adenocarcinoma and B-cell non-Hodgkin lymphoma (Supple-
mentary Data 9 and Supplementary Fig. 13). Although we do not
find sex differences in comparing the SMC coverage pass/fail
rates using a recommended minimum of 2.6 gigabases covered, it
is prudent to consider sex-biased SMC in relation to our findings.

Discussion
Our analysis of whole-genome sequencing data from the PCAWG
project uncovered sex differences in the largely unexplored non-
coding autosomal genome. In addition to validating previously
reported findings in a novel dataset, we present sex-biases in
measures of non-coding mutation density, tumour evolution and
mutation signatures. These sex-biases suggest differences in the
origins and trajectories of tumours between men and women, and
that they are influenced by different endogenous and environ-
mental factors. Although many of our findings describe pan-
cancer differences, we have also uncovered an intriguing glimpse
into tumour subtype-specific differences in cancers such as those
of the liver and kidney.

These results should be taken within context of a number of
caveats. As we use techniques like the Box–Cox transformation to
make the data better suited for our statistical methods, there are
likely characteristics that our models are unable to account for.
An alternate approach using robust modelling may be better
suited for future analyses. Secondly, the tumour subtype-specific
results are bound by subtype sample size, and lack of annotation
data restricts the ability to account for confounding variables. It is
therefore important to consider these results within context of the
multivariable models used, which do not directly capture char-
acteristics such as tobacco smoking history. Many of our core
multivariate regression models omit stage and grade due to a
large number of missing values. We follow up this core regression
with extended modelling as an additional level of scrutiny.
Although these extended models do include stage or grade, they
are run on a much smaller (up to 50%) subset of the data and
there is a corresponding loss of statistical power. Finally, there are
imbalances across covariate sample sizes, such as over-
representation of some tumour types in pan-cancer analysis.
We evaluated these imbalances using down-sampling analysis
and rejected results that were biased by these imbalances.
Nevertheless, pan-cancer analysis is dependent on the tumour
subtypes included in the cohort and some findings may reflect
subtype-specific trends rather than general characteristics across
all cancers.

Future increases in sample size and robust associated annota-
tion will allow for the detection of smaller effects and the control
of more confounders. Such large datasets are critical in validating
the preliminary findings we have described in this study.
Increasing the diversity of donors will also allow the study of
intriguing cross-variable questions such as investigating whether
sex differences are universal across races, or if there are race-
specific sex differences. Our results are based on single region
sequencing, which can bias the clonal reconstruction for these
tumours. Future work sampling multiple regions will allow us to
detect sex differences in more precise reconstructions at a greater
resolution. We will also be able to leverage germline data to assess
whether there are sex-biases in inherited variants that affect the
variants we observe in somatic mutation profiles.

Nevertheless, our analyses of driver genes and copy number
alterations suggest functional impacts of genomic sex-biases on
the transcriptome and tumorigenesis. By using signatures to
distinguish between mutations attributed to lifestyle factors such
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as smoking history, we can better describe sex differences related
to biological factors such as hormone activity. And despite low
tumour subtype-specific sample numbers, our mutation timing
and mutational signatures findings at both the pan-cancer and
tumour-subtype level hint at underlying mutational processes
that may give rise to molecular sex-biases. Combined with our
previous work in whole-exome sequencing, we present a land-
scape of sex-biases in cancer genomics and mutational processes
(Fig. 4).

It is becoming clear that sex differences occur across many
mutation classes and the portrait of differences for each tumour
subtype is a unique reflection of active mutational processes and
tumour evolution. We have performed here a pan-cancer analysis
of sex differences in whole-genome sequencing data and catalo-
gued previously undescribed sex-biases. However, increased study
of molecular sex differences in future large-scale sequencing
efforts is needed to strengthen the findings we present here, to
determine why men and women have molecularly different

tumours, and to determine how this information can be leveraged
to improve patient care.

Methods
General statistical framework. We only included non-sex-specific tumour sub-
types in our analysis and focused on the autosome, excluding the sex chromo-
somes. Covariate data include genomically matched sex, age at diagnosis, and
imputed ancestry.

For each genomic feature of interest, we performed three stages of analysis. At
stage one, we use non-parametric univariate tests (Pearson’s χ2 proportion or
Mann–Whitney U-test) first, followed by false discovery rate adjustment to identify
putative sex-biases of interest (q < 0.1).

At stage two, we further investigate these putative sex-biases by using
multivariate linear or logistic modelling to account for potential confounders using
bespoke models for each tumour subtype. Confounders were included as
independent variables in each model. Supplementary Data 1 describes the model
variables for each tumour context, as well as detail on when analyses included
multivariate modelling. Variables were included based on availability of data (<15%
missing), sufficient variability (at least two levels) and collinearity.

Discrete data were modelled using logistic regression. Continuous data were
first transformed using the Box–Cox family and modelled using linear regression.
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Fig. 4 The landscape of sex differences in cancer genomics. Summary of genomic features found to be sex-biased in pan-cancer analysis or in specific
tumour subtypes. Results from both PCAWG and TCGA analyses are shown. Direction of sex-bias is shown in coloration denoting which sex has higher or
more frequent aberration of the genomic feature. Top plot shows union of genes found to be involved in sex-biased CNAs. Starred indicate findings
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described in other studies.
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The Box–Cox family of transformations is a formalised method to select a power
transformation to better approximate a normal-like distribution and stabilise
variance. We used the Yeo–Johnson extension to the Box–Cox transformation that
allows for zeros and negative values23:

yλi ¼

yiþ1ð Þλ�1
λ ; if λ≠ 0; y ≥ 0

log yi þ 1ð Þ; if λ ¼ 0; y ≥ 0

� �yiþ1ð Þ2�λ�1
2�λ ; if λ≠ 2; y<0

� log �yi þ 1ð Þ; if λ ¼ 2; y<0

8
>>>><

>>>>:

:

FDR adjustment was performed for p-values for the sex variable significance
estimate and an FDR threshold of 10% was used to determine statistical
significance. For some tumour subtypes, the multivariate step is never performed
because there are no univariate hits to evaluate.

The third stage of analysis involves re-evaluating our stage two sex-biases with a
battery of additional modelling:

For pan-cancer findings, we evaluate the effect of unbalanced tumour subtype
sample sizes by repeatedly and randomly down-sampling to the median subtype
sample size with replacement (nmedian = 48). For each down-sampled dataset, we
record the difference between the male and female median/proportion, as well as
the p-value from the relevant univariate test (Supplementary Fig. 2). We repeat this
10,000 times for each finding to generate distributions of male–female differences
and p-values. We calculate a 95% confidence interval using the male–female
difference distribution and reject findings where this confidence interval overlaps
with 0. We also reject findings where the median down-sampled p-value is greater
than the p= 0.05 threshold.

For both pan-cancer and tumour subtype-specific findings, we evaluate the
effect of unbalanced sexes when either female or male donors account for >60% of
samples. We down-sample to the smaller number of samples with replacement and
record the difference between the male and female median/proportion, as well as
the p-value from the relevant univariate test (Supplementary Figs. 1, 3, 8, 9 and 11).
We repeat this 10,000 times for each finding to generate distributions of
male–female differences and p-values. We calculate a 95% confidence interval using
the male–female difference distribution and reject findings where this confidence
interval overlaps with 0. We also reject findings where the median down-sampled
p-value is greater than the p= 0.05 threshold. We present the median down-
sampled p-values throughout Supplementary Data 2–8.

For tumour subtype-specific results, we also use extended models that
incorporate additional variables such as tumour stage. Because this leads to up to
50% data loss, we only investigate a subset of results in this way. All extended
modelling results are presented in Supplementary Data 2–8.

Specific details are provided for each analysis below.

Driver event analysis. We focused on driver events (syn11639581) described by
the PCAWG consortium14. Driver mutation data were binarized to indicate pre-
sence or absence of the driver event in each patient. For the first stage of our
analysis, we compared proportions of mutated genes between the sexes using
univariate proportion tests. A q-value threshold of 0.1 was used to select genes for
further multivariate analysis in stage two using binary logistic regression. FDR
correction was again applied and genes with significant pan-cancer sex terms were
extracted from the models (q-value < 0.1). Driver event analysis was performed
separately for pan-cancer analysis and for each tumour subtype.

Clonal structure and mutation timing analysis. Subclonal structure and muta-
tion timing calls15 were downloaded from Synapse (syn8532460). Subclonal
structure data were binarized from number of subclonal clusters per sample to
monoclonal (one cluster) or polyclonal (more than one cluster). The proportion of
polyclonal samples was calculated per sex and compared in the first stage of
analysis using proportion tests for both pan-cancer and tumour subtype analysis.
The univariate p-values were FDR-adjusted across all tumour subtypes to identify
putatively sex-biased clonal structure. These cases were further scrutinised in stage
two using logistic regression. A multivariate q-value threshold of 0.1 was used to
determine statistically significant sex-biased clonal structure.

Mutation timing data classified SNVs, indels and SVs into clonal (truncal) or
subclonal groups. The proportion of truncal variants was calculated for each
mutation type (Number truncal SNVs

Total SNVs , etc) to obtain proportions of truncal SNVs, indels
and SVs for each sample. These proportions were compared in stage one of analysis
between the sexes using two-sided Mann–Whitney U-tests and univariate p-values
were FDR-adjusted to identify putatively sex-biased mutation timing. In stage two,
linear regression was used to adjust for confounding factors and a multivariate q-
value threshold of 0.1 was used to determine statistically significant sex-biased
mutation timing. The mutation timing analysis was performed separately for SNVs,
indels and SVs.

SNV density analysis. Consensus SNV calls were downloaded from Synapse
(syn7357330). Overall SNV density per patient was calculated as the sum of SNVs
across all genes on the autosomes and scaled to mutations/Mbp. Coding mutation
prevalence only considers the coding regions of the genome, and non-coding
prevalence only considers the non-coding regions. Mutation load was first

compared between the sexes using Mann–Whitney U-tests for both pan-cancer and
tumour-type specific analysis. Comparisons with U-test q-values meeting an FDR
threshold of 10% were further analysed using linear regression to adjust for tumour
subtype-specific variables. Mutation load analysis was performed separately for
each mutation context, with pan-cancer and tumour subtype p-values adjusted
together.

Chromosome and genome instability analysis. Consensus copy number data
were obtained from Synapse (syn8042988). Ploidy-adjusted calls were used to
identify segments with copy number gains and losses. The number of bases in
copy number gained or lost segments were summed per chromosome and
divided by chromosome size to obtain percent chromosome gained and lost,
respectively. All segments affected by any copy number aberration were also
summed and treated in the same way to calculate percent chromosome altered.
Percent copy number gained, lost and altered were also calculated over the
autosomes. In stage one, genome and chromosome instability were compared in
pan-cancer and tumour-subtype analysis using Mann–Whitney U-tests to
identify putatively sex-biased chromosome and genome instability. In stage two,
putatively sex-biased events were further analysed using linear regression
modelling. Genome instability analysis was performed separately for each
tumour subtype with FDR adjustment performed over percent copy gained, loss
and altered comparisons together.

Genome-spanning CNA analysis. Consensus copy number data (syn8042988)
were processed to gain/neutral/loss calls per gene. For each gene, we compared
the proportion of gains for each sex using proportion tests. For putative sex-
biased genes that passed an FDR threshold of 10%, we followed up with mul-
tivariate logistic regression to adjust for tumour subtype-specific covariates
(Supplementary Data 1). We repeated this analysis for copy number loss. This
genome-spanning analysis was performed separately for losses and gains for
each tumour subtype.

Mutational signatures analysis. The number of mutations attributed to each SBS
(syn11738669), DBS (syn11738667) and ID (syn11738668) signature16 per sample
was downloaded from Synapse. For each signature, we compared the proportion of
samples with any mutations attributed to the signatures (“signature-positive”)
using χ2-square tests to identify univariately significant sex-biases. Signatures with
putative sex-biases were further analysed using logistic regression.

We also compared the proportions of mutations attributed to each signature.
The numbers of mutations per signature were divided by total number of
mutations for each sample to obtain the proportion of mutations attributed to the
signature. In the first stage of analysis, we used Mann–Whitney U-tests to compare
these proportions of attributed mutations, and Kolmogorov–Smirnov tests to
compare their distributions between the sexes. Putative sex-biased signatures were
further analysed using linear regression after Box–Cox adjustment.

In addition to tumour subtype-specific covariates, we included SNV density in
all multivariate mutational signatures models to account for bias in calling more
signatures in SNV-dense samples. Signatures that were not detected in a tumour
subtype were omitted from analysis for that tumour subtype. We also used
Kolmogorov–Smirnov tests to compare the distributions of attributed mutations
and kept results where the sex-difference was significant or trending.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Somatic and germline variant calls, mutational signatures, subclonal reconstructions,
transcript abundance, splice calls and other core data generated by the ICGC/TCGA Pan-
cancer Analysis of Whole Genomes Consortium are described in the marker paper13 and
available for download at https://dcc.icgc.org/releases/PCAWG. Additional information
on accessing the data, including raw read files, can be found at https://docs.icgc.org/
pcawg/data/. In accordance with the data access policies of the ICGC and TCGA projects,
most molecular, clinical and specimen data are in an open tier that does not require
access approval. To access potentially identification information, such as germline alleles
and underlying sequencing data, researchers will need to apply to the TCGA Data Access
Committee (DAC) via dbGaP for access to the TCGA portion of the dataset, and to the
ICGC Data Access Compliance Office (DACO) for the ICGC portion. To access somatic
single nucleotide variants derived from TCGA donors, researchers will also need to
obtain dbGaP authorisation. In addition, the analyses in this paper used a number of
datasets that were derived from raw PCAWG sequencing data and variant calls
(Supplementary Data 10). The individual datasets are available at Synapse (https://www.
synapse.org/), and are denoted with synXXXXX accession numbers (listed under Synapse
ID); all these datasets are also mirrored at https://dcc.icgc.org, with full links, filenames,
accession numbers and descriptions detailed in Supplementary Data 10. Tumour
histological classifications were reviewed and assigned by the PCAWG Pathology and
Clinical Correlates Working Group (annotation version 9; syn10389158, syn10389164).
Ancestry imputation was performed using an ADMIXTURE24-like algorithm by the
PCAWG Germline Cancer Genome Working Group based on germline SNP profiles
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determined by whole-genome sequencing of the reference sample and are available in
Supplementary Table 1 of the PCAWG marker paper13. The consensus somatic SNV and
indel (syn7357330) file covers 2778 whitelisted samples from 2583 donors. Driver events
were called by the PCAWG Drivers and Functional Interpretation Group (syn11639581).
Consensus CNA calls from the PCAWG Structural Variation Working Group were
downloaded in VCF format (syn8042988). Subclonal reconstruction was performed by
the PCAWG Evolution and Heterogeneity Working Group (syn8532460). SigProfiler
mutation signatures were determined by the PCAWGMutation Signatures and Processes
Working Group for single base substitution (syn11738669), doublet base substitution
(syn11738667) and indel (syn11738668) signatures.

Code availability
The core computational pipelines used by the PCAWG Consortium for alignment,
quality control and variant calling are available to the public at https://dockstore.org/
search?search=pcawg under the GNU General Public License v3.0, which allows for
reuse and distribution. All statistical analyses and data visualisation were performed in
the R statistical environment (v3.4.3) using the BPG25 (v5.9.8) and car (v3.0-2) packages.
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